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The pressure distribution which results from the disturbance of initially plane, 
parallel, and constant-pressure inviscid supersonic flow in which there is a strong 
entropy variation near a surface is investigated. The disturbance considered may 
arise from a small deflection of the surface or may be the result of a simple wave 
impinging on the entropy layer. This linear problem has been treated previously 
by a somewhat different technique for transonic entropy layers by Howarth 
(1948), Tsien & Finston (1949), and Lighthill (1950, 1953). The results obtained 
in this investigation are useful principally in that they permit the general 
behaviour of such pressure distributions to be deduced without resort to the 
more general method of characteristics for rotational flows. 

1. Introduction 
One of the principal features of hypersonic wing theory is the fact that, in 

general, shock-expansion theory in the sense that i t  is used at low supersonic 
speeds is inapplicable. One reason for this is that expansion waves arising a t  the 
surface are reflected by the shock wave soon enough to affect the surface pressure. 
This phenomenon has been adequately treated in the literature (see, for example, 
Scheuing et al. 1959). Another reason for the failure of the usual shock-expansion 
theory is the existence of entropy gradients near the surface of wings with blunt 
noses. These gradients arise from the fact that the air near the surface has passed 
through a normal or nearly normal shock associated with the blunt nose, while 
the air farther from the surface has passed through a weaker oblique shock. 
These gradients alter the strength of expansion waves arising at the surface 
and produce reflections that alter the surface pressure. The case of weak gradients 
has also been treated in, for example, Scheuing et al. (1959). This paper is con- 
cerned with the effect of strong gradients. 

If one considers the general behaviour of the propagation into an otherwise 
undisturbed flow of an expansion wave caused by a small surface deflection when 
there exists above the surface a strong variation of entropy, i.e. a strong varia- 
tion of local Mach number from the Mach number at the surface M, to some higher 
Mach number at the edge of the layer M8, one finds that the drop in surface 
pressure consists of two parts: 
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(1) The usual instantaneous Prandtl-Meyer drop in pressure due to the 
surface deflection. The magnitude of this pressure drop is that appropriate to 
the local surface Mach number &lo. 

( 2 )  A gradual drop in pressure after the initial drop until is it  complete a t  
a value of pressure appropriate to a Prandtl-Meyer expansion around the 
surface corner at the external Mach number Ma. This approach to the proper 
final pressure is exponential in character. 

The present paper will be concerned with a study of the character of such 
exponential ‘tails ’. The present work arose quite naturally out of a more general 
study of pressure distributions about hypersonic bodies. 

I n  what follows, we shall discuss in some detail the nature of the downstream 
iiifluence of small pressure disturbances which propagate into an otherwise 
undisturbed, inviscid, entirely supersonic flow near a surface above which exists 
a strong variation of Mach number within a finite region. This problem is very 
closely related to previous work carried out by Howarth (1948), Tsieii & Finston 
(1949), and Lighthill (1950, 1953). In  these papers the authors were primarily 
concerned with the behaviour of shock boundary-layer interactions and in 
particular with the upstream influence of a pressure disturbance introduced into 
an otherwise undisturbed flow having a variation of Mach number normal to the 
stream lines. In  particular, Howarth considered the problem of a supersonic 
wavelet arising in the region 0 < y < co, where the Mach number was constant 
and larger than unity, impinging on the semi-infinite region - 00 < y < 0, where 
the Mach number was constant and less than unity. Tsien & Finston carried on 
in this vein and studied the wave impingement problem in the upper half-plane 
0 < y < 00 such that the surface y = 0 was a streamline and in the region 
0 < y < 6 the Mach number was constant and less than unity, while for the rest 
of the half-plane 6 < y < tx) the Mach number was constant and larger than unity. 
Tsieii & Finston considered for such a distribution of Mach number the case of 
an impinging wavelet as well as the pressure disturbance arising from a small 
deflection of the surface streamline at  y = 0. Lighthill (1950) further generalized 
the problem by considering that the distribution of Mach number in the region 
0 < y < 6 varied continuously and monotonically from zero at y = 0 to  a 
constant supersonic Mach number at y = 6. Later Lighthill (1953), in order to 
make his findings more compatible with experimental results, considered the 
case just described but with M + 0 at y = 0. In  these studies the flow was con- 
sidered to be inviscid except in the case of Lighthill (1953), where the effects of 
viscosity in a small sublayer near the surface are discussed. 

As will be seen in what follows, these papers are all very closely related to the 
problem considered here. The method of treatment is, however, somewhat 
different. This is because earlier authors were interested in mixed subsonic and 
supersonic flows and hence in both the upstream and downstream influence of 
pressure disturbances. I n  the present paper, in which the flow is considered to 
be entireIy supersonic, only the downstream influence need be considered. Hence, 
one-sided Laplace transforms are adequate in this paper where the earlier authors 
used two-sided Fourier transforms. The theoretical treatment in our paper 
differs from that of Lighthill (1950, 1953) primarily in detail and emphasis. 
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Instead of being interested in upstream influence in a subsonic layer we are 
interested in downstream influence in a completely supersonic flow. Instead 
of being interested in approximate values of a series of real poles of an analytic 
function we are interested in the precise values and residues at one real pole and 
a number of complex ones. The eventual aimin our case is to provide a significant 
but simple improvement of the shock-expansion method of calculating pressures 
on a body. 

2. Derivation of basic equations 
The two-dimensional equations of motion (see Hayes & Probstein 1959) in 

streamIine co-ordinates, 6 and n, respectively along and normal to the stream- 
lines, are 135 + PqqS = 0, (2.1) 

Pn +pq20, = 0,  (2.2) 

(Pq), +P@n 1 07 (2.3) 

and the equation of continuity is 

where p is the pressure, p the density, q the magnitude of the velocity, and 0 its 
angle; subscripts denote partial differentiation. Because only infinitesimal 
changes from parallel flow along a flat plate are to be considered, the (5,n) 
co-ordinate system is an ordinary Cartesian system, and n can be defined as 
distance from the plate. 

Since entropy is constant along streamlines 

PS = U2PQ (2.4) 
where a is the speed of sound. Elimination of pg and qS from equations (2.l), 
(2.3), and (2.4) gives 

(2.5) p 5 + m  pq2 en = 0, 

where M = q/a. Introducing the effective ratio of specific heats defined by 

Y e  = P W P  

r = y e ~ 2 / ( ~ 2 -  I)*, 

P~ + ren/(&% i)J = 0, 
P,+ ( ~ 2 -  I)-$ re, = 0, 

and the interaction parameter 

equations (2.5) and (2.2) become 

where P = In (PIPi ) ,  pi being a reference pressure. 

variable y is introduced by dy = ( ~ 2  - 1 )+ ,jn. 

(It is assumed that the Mach number, M ,  is everywhere greater than 1. In the 
(C,y)-plane the characteristics are everywhere at angles of k45" to the co- 
ordinate axes.) Equations (2.8) and (2.9) become 

It is assumed that M and ye (and hence r) are independent of 5, and a new 

q+ re, = 0, (2.10) 
P, + re, = 0, (2.11) 
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where = r ( y )  is known from the upstream conditions, and hence the equations 
are linear. 

We now assume a finite entropy layer, i.e. that there is a value of y beyond 
which I? is constant. Thus r ( y )  = I', for y > h. We are now interested in the 
solution of equations (2.10) and (2.11) in the semi-infinite strip 0 < y < h and 

In order to get the boundary conditions to be applied to this strip, consider 
= F,. 
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g > 0. 

the solution of equations (2.10) and (2.11) in the region y > h where 
The general solution is (2.12) f9 = f(E- Y) + 9(5 + Y), 

P = rm[f(t-Y)-g(l+y)l* (2.13) 

The solution as expected consists of a set of waves moving away from the surface 
y = 0 described byf(5 - y) and a set of incoming waves described by g ( ( +  y). 

Two separate basic problems may now be distinguished. The first problem is 
that of the pressure distribution resulting from a perturbation of the surface at 
y = 0 in the absence of incoming waves. In  this case we get g( [+ y) = 0 and 
O ( 6 , O )  = F ( ( )  for 6 > 0. The second basic problem is that of finding the pressure 
distribution due to a given incoming disturbance g([+y) for y > h with no 
surface distortion, i.e. O($, 0) E 0. 

In  what follows, we will consider these two problems in detail. The general 
formulation of the combined problem is given below. We assume the incoming 
disturbance is such that g ( [ + h )  = 0 for < 0 and is such that g ( [ + h )  = G([) 
for 6 > 0. The boundary conditions to be applied to equations (2.10) and (2.1 1 )  
are then 

(2.14) 

This last condition arises from the fact that P and 0 must be continuous at 
y = h and is obtained from equations (2.12) and (2.13) by eliminatingf(c- y) at  
y = h. 

If a function Y(5, y) is now introduced such that 

P = ~ Y , ,  e = - y  6, (2.15) 

then equation (2.10) is satisfied automatically and equation (2.11) becomes 

FY& - rq-5 = 0 ,  (2.16) 

and the boundary conditions (2.14) become 

(2.17) 
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at  h, the last of these equa- 

(2.1 7 u) 

In what follows this alternate form of the boundary condition at y = h is not 
explicitly mentioned although it is used in some of the examples. 

be the Laplace transform of Y with respect to 6, 

if I’ is continuous a t  h. If there is a discontinuity in 
tions must be replaced by 

r(h - 1 Y& h) + rmY&, h) = - 2rCo G(5) (6 > 0). 

Let 

Equations (2.16) and (2.17) transform to 

(rF&, - s2r P = 0, (2.18) 
P(s,O) = -F(s)/s,  (2.19) 

Fy(s, h )  + sP(s, h )  = - ~ B ( s ) ,  (2.20) 

where F(s)  and B(s) are the Laplace transforms of S(5) and G(6)  respectively. 
In  brief, we seek, for a given distribution r(y), the inverse transform of the 

solution of equation (2.18) subject to conditions (2.19) and (2.20). In  particular, 
we are interested in the behaviour of the pressure at the wall, which is given by 

m, 0 )  = r(0) YJ6, 0) .  
For the most part, because of the physical considerations discussed earlier, we 
consider functions I?( y) which are non-decreasing for y increasing, and which 
have strong variation, i.e. r,/r(O) not close to one. 

3. Pressure distribution due to the small deflexion of a flat plate 
3.1. Formulation 

We now proceed to a discussion of the first basic problem mentioned in the 
previous section, namely that of finding the pressure distribution downstream 
of a small surface deflection e in an otherwise flat plate. If we set G(6) = 0, and 
P(6) = e l ( t ) ,  where 1(<) is the unit step function, the governing equations are 

(rF&,-~zrF = 0, (3.1) 
F(s, 0 )  = -e/s2, (3 .2 )  

Fu(s, h)  +sP(s, h) = 0. (3.3) 
This boundary-value problem in Y(6, y )  can be interpreted as that of a semi- 
infinite vibrating string where Y is the displacement at  any time, 6, and position, 
y, and both the density and tension of the string vary along its length according 
to the same function = F(y). The boundary conditions state that initially the 
string is at rest with zero displacement; at time [ = 0 the end y = 0 is made to 
move with velocity - e; and the part y > h has no incoming waves. 

3.3. Explicit solutions 
If the function is such that 

ir” 1 r’ 2 

2r 4 7  
----( ) = c  ( O < y < h ) ,  (3 .4)  
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where c is a constant, the general solution of equation (3.1) is 

R. D. Sullivaiz, C. duP. Donaldsolz and M? D. Ha.yes 

P(s, y) = r-h[A(s) exp {(s2 -p c)* y} + B(s) exp { - (.s2 + c)* y}], (3.5) 

where A and B are readily evaluated from the boundary conditions. The inverse 
transforms of these functions usually involve convolutions of Bessel functions 
and the condition (3.4) is not sufficiently general to warrant the presentation of 
the results. However, there are two cases that give c = 0, so that the inverse 
transforms are quite simple; these shed a good deal of light on the general case. 

The first of these is given by a simple step function for I' 

2 
1, 

F4 

% 
9 
-6, 

2 

a, 

E: 
.3 

a, 

4 2  
> ." 
* 

Then 

I 
I I 

where 0 = (r, - I?,)/( r, + I?,), and it is found that 

f'(& 0 )  = d?,[l(t) + 2G1(5 - 2h) + 2G1(5 - 4h) + . . .I, (3.8) 
a result easily found by more direct methods. This can also be written since 

for 2nh < 5 < 2 ( n  + 1) h. This function is illustrated in figure 1 for Frn/rb = 4. 
The second case is for r given by 

r = r,(i +y/a)2 (0  Q y Q h), 

(h  Q Y), r = r, 
where a > 0 is taken such that 

so that I' is continuous. Then 
rb(l = I',, 

(3.10) 

(3.11) 



Pressure distributions with s,upersonic entropy layers 487 

and the wall pressure can be expressed by 

(3.12) 

and E -  2kh s -- 
I: - 2(a+h)  

This function is illustrated in figure 2 for Foo/rh = 4. 

Distance downstream 

FIGURE 2. Surface pressure distribution downstream from a corner for the 
I'-distribution given by equation (3.10) with = 4. 

3.3. Eigenfunction expansion of solution 
A powerful method of obtaining the inverse Laplace transform of a function f(s) 
is to sum the residues of the function eSt f at the poles off. In  order to determine 
the poles of consider the function Y ( s ,  y )  defined by 

- m y  = 0, 

YJs, h)  +sY(s ,  h) = 0, 
Y ( s , h )  = 1.  

(3.13) 

(3.14) 

(3.15) 

Since this differential equation and one of the boundary conditions apply also 
to 7 (equations (3.1) and (3.3)), it  is easily shown that the ratio F/Y! is independent 
of y. Thus Rs, Y) %, 0) 

W s ,  Y )  Y(s, 0 )  ' 
-=--- 

or using equation (3.2), 

(3.16) 

It is seen that the zeros, in the complex s-plane, of Y(s, 0 )  correspond to poles 
of P(s, y ) .  Hence, we are led to consider the eigenvalue problem defined by 
equations (3.13) and (3.14) and 

Y ( s , O )  = 0. (3.17) 
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This differs from the usual eigenvalue problem in that the eigenvalue s occurs 
explicitly in the boundary condition (3.14) as well as in the differential equation. 

The pressure distribution downstream of the surface deflection is now given 
by the sum of the residues of the function 

(3.18) 

It is obvious from physical considerations that the eigenvalues sk = 0ck+ipk of 
the eigenvalue problem posed above must have negative real parts. Thus the 
residue of the function given in (3.18) for the pole at the origin s = 0 must be 
such as to account for the pressure rise that is to be achieved by the deflection 

M 

FIGURE 3. Mach-number distribution (equation (3.20)) used in 
illustrative numerical solution. 

through the angle 6 of the flow outside the entropy layer. The residue of the 
function Y,(s, 0) esg/s2Y(s, 0) at  s = 0 is thus - FJ?(O). The pressure distribu- 
tion is then given (if all the poles are simple) by 

(3.19) 

where the sk are the eigenvalues of the system given by (3.13), (3.14), and (3.17), 
and Y’(s, 0) is the derivative with respect to s of the function Y(s, 0) .  

As an example of this method of solving for pressure distributions, consider 
that the entropy distribution above the plate is given by the Mach-number 

(3.20) distribution 

which is illustrated in figure 3. A numerical procedure was used to obtain the 
eigenvalues and eigensolutions for this case. The positions of the first six poles 
of the pressure distribution function (3.18) are shown in figure 4. The behaviour 
of the eigensolutions Y = u + i v  is shown in figure 5. The pressure distributions 
obtained by summing the residues at the first, the first two, the first four, and the 
first six poles of the pressure distribution function are shown in figure 6 where 

M = 5 + 5(n/S)2 (3  - %/a), 
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FIGURE 5. Behaviour of eigensolutions Y = u + iv for the 

Mach-number distribution given by equation (3.20). 

FIGURE 4. Location of the poles in the complex s-plane of the transform of the pressure 
distribution function for the Mach-number distribution given by equation (3.20). 



490 R. D. Sullivan, C. duP. Donaldson and D. Hayes 

they are compared with the exact pressure distribution calculated by the method 
of characteristics. 

The character of the pressure distributions obtained by the procedure just 
outlined may be seen from these results. For r-distributions of the type under 
discussion here, i.e. P a non-decreasing function of y, it appears that, in general, 
the poles consist of: (1) the pole at the origin which accounts for the pressure 
change far from the corner due to the flow outside the entropy layer; (2) a small 
negative real pole which accounts, in general, for the scale of distance required 
for the expansion or compression caused by the corner to be complete; and (3)  
an infinite set of complex poles having more and more negative real parts which 
account for more and more details of the pressure distribution, especially near 
the corner. 

From the results just presented, it seems apparent that the character of the 
flow downstream of a corner for the case of monotone-increasing P can, in general, 
be obtained from the first two poles of the pressure distribution function. Since 
the pole at the origin and its residue are known, this requires that only one real 
tigenvalue of the problem posed by equations (3.13), (3.14), and (3.17) need be 
found. This proves to be a not too difficult problem numerically.* However, 
if more details of the flow are required, the computational problem becomes 
formidable as the search for the complex eigenvalues is now two-dimensional, 
and the character of the eigenfunctions themselves for the higher eigenvalues 
requires more careful integration techniques as may be seen from figure 5. 
Furthermore, the convergence is slow. From this it may be concluded that the 
present method has advantages over the method of characteristic from a com- 
putational point of view only when the general character of the flow is required 
and local details in the vicinity of the corner are not of primary importance. 

These remarks may be brought to better focus by considering the behaviour 
of the pressure distribution due to the step function in P considered previously, 
by summing the residue of a finite number of poles of the pressure distribution 
function derived from equation (3.7), namely 

The poles of this function are shown in figure 7. The pressure distributions 
obtained by summing the residue of the pole at the origin, the two real poles, the 
first four poles about the origin, and the first ten poles about the origin are com- 
pared in figure 8, with the exact' solution already given. These results make quite 
clear the nature of these solutions for I'-distributions which are increasing 

* Lighthill (1953) obtains a first approximation to the value of this eigenvalue by 
assuming it is so small that the second term of (3.13) can be neglected. Then 

rY3, = const. = r(h) Ypy(h)  
or, using (3.14) slr(h)/r = - Y ~ / Y ( ~ ) .  
Integrating this eqnation, and using (3.17) gives 

J o  1 
which is Lighthill's expression. 
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functions of y in the region 0 < y < h. We again see that the general character 
of the pressure distribution is given by the residues of the two poles closest to 
the origin and that more and more detail is given by adding the residues of more 
and more poles. Again it should be pointed out that the method cannot give 
accurate results in the neighbourhood of the corner unless many terms are taken 
in the eigenfunction expansion of the solution. 

Distance downstream 

FIGURE 6. Surface pressure distribution downstream from a corner for the 
Mach-number distribution given by equation (3.20). 

The results just presented bold for distributions r ( y )  that are monotone 
increasing functions of y. Somewhat similar results hold for the case of distribn- 
tions r (y)  that are monotone decreasing functions of y, although the distribution 
of poles of the pressure distribution function is quite different. In  the case 
I?’ = dr jdy  < 0,  it is not hard to show that except for the pole at  the origin there 
are no poles on the real axis. We multiply equation (3.13) through by Y J F  and 
integrate with respect to y from y = 0 to y = h and obtain 

h r‘ 
[Y&, h)]2 - [Y?& 0)]2 + 2 I0 r y a y  = s2[Y(s, h)]2. 

Using the boundary condition 

Y,(s,h)+sY(s,h) = 0, 

we obtain 

Since we have assumed I” = d r j d y  < 0 and > 0, we see from this expression 
that Y may not be real. This in turn requires that sk be complex. Nevertheless, 
it  is still true that the poles nearest the origin define the large-scale or gross 
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features of the pressure distribution while the poles far from the origin determine 
the details or high-frequency components of the distribution as in the case of 
monotone increasing functions of I'. One again finds, because of this situation, 

0 li 3n 0 

-oh 
0 

0 

- 377 0 

- -;! 4 n  0 

FIGURE 7. Location of the poles is the complex 8-plane of the transform of the pressure 
distribution function for a step I?-distribution (equation (3.6)) with rW > 

I 

,, , , 7,y 
10 poles 

f 2 poles 

\ 4 poles 

I 

Distance downstream 

FIGURE 8. Surface pressure distribution downstream from a corner for a step 
I?-distribution (equation (3.6)) with rW/rb  = 2.  

that the pressure in the immediate vicinity of the origin is poorly defined. For 
example, we may observe the behaviour of the pressure distributions obtained 
by considering the first three, the first five, and the first eleven poles in the 
pressure distribution function for the case of a step-function I'-distribution 
when r, < r(0) (see figure 9). 
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3.4. Xolution near c = 0 
We have just seen that the method outlined above does not, except by the 
expenditure of very large effort, yield valid answers in the vicinity of the corner, 
i.e. for f; -+ 0. In  many cases, however, it  is not the character of the pressure 
distribution far from the corner that is of interest. For example, in the case of 
a flap at the trailing edge of a hypersonic airfoil whose chord is not large com- 
pared to the thickness of the entropy layer into which it deflects, we do not care 
about the pressure distribution far from the wing-flap juncture. In this case, 
we are interested in the pressure distribution near this juncture. We therefore 
seek a solution for the pressure distribution valid in the vicinity of [ = 0. 

Distance downstream 

step I?-distribution (equation (3.6)) with roo/rb = +. 
FIGURE 9. Surface pressure distribution downstream from a corner for a backward 

If r is an analytic function of y, P is an analytic function; if I’ is analytic in 
the domain 0 < y < h, P(f;, 0)  is analytic in the domain 0 < 6 < 2h since the first 
wave that reflects back from y = h arrives at the wall at  [ = 2h. Thus, for small 
[ the pressure distribution can be expressed as a power series. This procedure 
is particularly attractive when, for example, the chord of the flap in the example 
cited above is of the order of h. 

In order to develop the series solution new variables are introduced by 

(3.21) 
(3.22) 

(3.23) 

(3.24) 
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and the third of conditions (2.17) can be written 

for F(5) = el(5). 
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Z ( n ,  0 )  = - e l ( a )  (T 

An expansion of 2 in powers of (T is assumed 

2 =   el((^) 

(3.25) 

(3.26) 

Substituting this expression into equation (3.24) and equating the coefficients 
of equal powers of c, we get 

(3.27) 
gz; + g’Z, = 0 ,  

gZ~+g‘Z, = tgZ~- l+g’Z~- l  (n > 1 ) ;  

equation (3.25) becomes 
Z,(O) = 1, 

Z,(O) = 0 (n > 1); 
(3.28) 

Z, is immediately found to be l /g  since g(0) = 1. The other Zi are not as easily 
expressed but the Zi(O), which are all that is needed to find P(t ,  O), are readily 
found when advantage is taken of equations (3.28). Thus i t  is found that 

z;(o) = -g’(O), 
Zi(0) = -*g”(O), 

ZA(0) = - ig”(0) + f g ’ (0 )  g”(O), etc. 
Since 

with (r = 5 the series for the wall pressure is 

%, 0 )  = r b q 5 ,  0 )  = r,[Z,(a, 0 )  - ZJV, 011 

P ( ~ , o )  = 

The rapidity of convergence of this series, and hence its usefulness for calcula- 
tions, obviously depends on the particular function g = (r/r,)& under con- 
sideration. 

4. Pressure distribution due to wave impingement 
We now consider the second fundmental problem, namely the pressure dis- 

tribution that results from the impingement of a compression or expansion wave 
on a flat surface above which exists an entropy layer. The basic equations in this 
case are 

-82r L = 0, (4.1) 
I’(s,O) = 0, (4.2) 

(4.3) 

- 

P(s, h) + sP(s, h) = - 28(s).  

As before we consider the eigenvalue problem defined by 
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From equation (4.8) we note that 
- 2Q(s) $(s) = _____ 

Y J S ,  h)  + sY(s,  h) ' 

-I"(?@) Y(s, y) Y(s ,  y) = -~ 
Y$/ ( s ,h )+sY(s ,h ) '  

and hence from equation (4.7) 

The transform of the surface pressure distribution is then 

(4.9) 

(4.10) 

(4.11) 

It is seen from this expression that the poles of this function are determined by 
precisely the same eigenvalue problem as in the case of determining the pressure 
distribution due to a deflection of the surface. The eigenvalues (poles) are there- 
fore identical. Indeed, the whole problem is so similar to those just discussed 
that a detailed discussion need not be undertaken; two simple examples will 
suffice. 

For the two special I?-distributions considered in $ 3 . 2  and for a simple in- 
coming wave of the type 

the wall pressure is easily found. Thus 

d t f Y )  = w - + Y - h )  

P([, 0) = - 2sr,(i - G ? L + ~ ) ,  

when ( 2 n + l ) h  < 5 < (%+3)hfOr 

r = rb (0 G y < h) ,  
r = r, (h  < Y), 

and 

when (2n+ l ) h  < [ < (2n+3)h for 

5. Summary 
In  the preceding sections we have presented a discussion of the pressure 

distributions which result when small perturbations are made in an otherwise 
undisturbed, planar, inviscid, supersonic flow in which a strong entropy layer 
exists. The complete solution of this problem can be obtained explicitly only for 
a few very special distributions of entropy. In  general, however, the character 
of such pressure distributions can be obtained in the form of an eigenfunction 
expansion of the solution. The general method is useful for it allows the user to 
determine in a fairly simple fashion the behaviour and scale of the interactions 
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produced by the penetration of an entropy layer by a pressure wave. For the 
fine structure of the pressure distributions that result from such interactions, the 
computational effort required to obtain valid results is such that one would, in 
general, choose to use the more general and exact method of characteristics for 
rotational flow. For certain special cases, where one is interested in the detailed 
behaviour of the interaction only near the start of such an interaction, these 
details can be found in the form of a series solution for the pressure distribution 
that is valid throughout the region of interest. Probably the most useful aspect 
of the present theory is not to be found in its use as a computational tool, but 
rather in the physical insight it affords into a very basic phenomena of hypersonic 
flow, namely, the interaction of pressure waves with flow layers which have 
strong variations of entropy. 
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